eng
competition

Text Practice Mode

L'univers selon wikipédia

created Mar 30th 2015, 10:37 by wens


13


Rating

1497 words
37 completed
00:00
L'Univers est l'ensemble de tout ce qui existe, régi par un certain nombre de lois.
 
La cosmologie cherche à appréhender l'Univers d'un point de vue scientifique, comme l'ensemble de la matière distribuée dans le temps et dans l'espace. Pour sa part, la cosmogonie vise à établir une théorie de la création de l'Univers sur des bases philosophiques ou religieuses. La différence entre ces deux définitions n'empêche pas nombre de physiciens d'avoir une conception finaliste de l'univers : voir à ce sujet le Principe anthropique.
 
Si l'on veut faire correspondre le mouvement des galaxies avec les lois physiques telles qu'on les conçoit actuellement, on peut considérer que l'on n'accède par l'expérience qu'à une faible partie de la matière de l'Univers1, le reste se composant de matière noire. Par ailleurs, pour expliquer l'accélération de l'expansion de l'univers, il faut également introduire le concept d'énergie sombre. Plusieurs modèles alternatifs ont été proposés pour faire correspondre les équations et nos observations en prenant d'autres approches.
 
Les sciences grecques tentèrent de comprendre le monde et de l'expliquer :
 
    les philosophes Parménide, Platon, et Aristote avaient intégré l'idée d'une Terre sphérique, mais ils la voyaient au centre de l'Univers physique, alors que l'école de Milet se représentait la Terre plate ;
    Ératosthène tenta de réaliser des calculs précis, notamment la mesure de la circonférence d'un méridien terrestre ;
    Aristarque de Samos est le premier à envisager un modèle de système planétaire héliocentré. Cette découverte ne fut alors pas suivie2, pour des raisons philosophiques surtout parce qu'une telle cosmologie est en désaccord avec la conception géocentrée du monde qui était retenue par de grands philosophes comme Parménide, Platon, et Aristote. Il calcule aussi la distance Terre-Lune pour laquelle il trouve une valeur discutée, mais qui se situe en tout état de cause dans un ordre de grandeur acceptable3, ainsi qu'une distance Terre-Soleil4. ;
    Hipparque poursuit ce travail : il recalcule, selon des méthodes nouvelles, la distance Terre-Soleil ainsi que la distance Terre-Lune (pour laquelle il retient la valeur de 67 1/3 rayons terrestres, contre 60,2 en réalité5), recense 1 500 étoiles[réf. nécessaire], retrouve approximativement la période de précession des équinoxes, qui était déjà connue des Babyloniens.[réf. nécessaire]
    Ptolémée poursuit le travail d'Hipparque. Son Almageste sera la référence astronomique essentielle pendant treize siècles.
Ces connaissances du monde grec perdurèrent et influencèrent les sciences arabes après l'effondrement de l'Empire romain d'Occident. Elles restèrent présentes en Orient (particulièrement, avec des hauts et des bas, à Byzance6), même si Cosmas d'Alexandrie tente, sans succès, de restaurer le modèle d'un monde plat.
 
La Renaissance porte à son apogée cette représentation du monde, grâce aux explorations et aux grandes découvertes qui eurent lieu du XIIIe au XVIe siècles, à partir de systèmes géographiques et cosmologiques très élaborés (projection de Mercator).
 
La révolution copernicienne bouleverse cette cosmologie en trois étapes :
 
    Copernic redécouvre l'héliocentrisme. Toutefois, cette redécouverte n'est que partiellement révolutionnaire : en effet, Copernic reste attaché aux sphères transparentes du modèle d'Aristote (pourtant délaissé par Ptolémée) censées soutenir les planètes et leur imprimer leur mouvement ; il présente son système comme un simple artifice destiné à simplifier les calculs.
    Le dominicain Giordano Bruno défend la réalité du modèle héliocentrique et l'étend à toutes les étoiles, ouvrant la dimension de l'Univers physique à l'infini. Il sera brûlé au bûcher en tant qu'hérétique non pour des raisons scientifiques, mais religieuses.
    Kepler, Galilée et Newton posent les bases fondamentales de la mécanique à partir du mouvement des planètes, grâce à leurs études respectivement du mouvement elliptique des planètes autour du Soleil, l'affinement des observations astronomiques avec la définition du mouvement uniformément accéléré, et la formalisation mathématique de la force de gravité. L'Univers, toutefois, reste confiné dans le système solaire.
Des modèles physiques tels que la sphère armillaire ou l'astrolabe ont été élaborés. Ils permettent d'enseigner et de calculer la position des astres dans le ciel visible. Aujourd'hui encore, la carte du ciel mobile aide les astronomes amateurs à se repérer dans le ciel, c'est une réincarnation de l'astrolabe.
 
Les observations du décalage vers le rouge des rayonnements électromagnétiques en provenance d'autres galaxies suggèrent que celles-ci s'éloignent de notre galaxie, à une vitesse radiale d'éloignement proportionnelle à ce décalage (effet Doppler).
 
En étudiant les galaxies proches, Edwin Hubble s'est aperçu que la vitesse d'éloignement d'une galaxie était proportionnelle à sa distance par rapport à l'observateur (loi de Hubble) ; une telle loi est explicable par un Univers visible en expansion.
 
Bien que la constante de Hubble ait été révisée par le passé dans d'importantes proportions (dans un rapport de 10 à 1), la loi de Hubble a été extrapolée aux galaxies éloignées, pour lesquelles la distance ne peut être calculée au moyen de la parallaxe ; cette loi est ainsi utilisée pour déterminer la distance des galaxies les plus éloignées.
 
En extrapolant l'expansion de l'Univers dans le passé, on arrive à une époque celui-ci a être beaucoup plus chaud et beaucoup plus dense qu'aujourd'hui. C'est le modèle du Big Bang, conçu par Georges Lemaître prêtre catholique belge, qui est un ingrédient essentiel de l'actuel modèle standard de la cosmologie et possède aujourd'hui un grand nombre de confirmations expérimentales[réf. nécessaire]. La description du début de l'histoire de l'Univers par ce modèle ne commence cependant qu'après qu'il fut sorti d'une période appelée ère de Planck durant laquelle l'échelle d'énergie de l'Univers était si grande que le modèle standard n'est pas en mesure de décrire les phénomènes quantiques qui s'y sont déroulés. Durant cette époque, seule une théorie de la gravitation quantique pourrait expliquer le comportement microscopique de la matière sous l'influence importante de la gravité. Mais les physiciens ne disposent pas encore (en 2015) d'une telle théorie. Pour des raisons de cohérence avec les observations, après l'ère de Planck le modèle du Big Bang privilégie aujourd'hui l'existence d'une phase d'inflation cosmique très brève mais durant laquelle l'Univers aurait grandi de façon extrêmement rapide. C'est à la suite de cette phase que l'essentiel des particules de l'Univers aurait été créé avec une haute température, enclenchant un grand nombre de processus importants7 qui ont finalement abouti à l'émission d'une grande quantité de lumière, appelé fond diffus cosmologique, qui peut être aujourd'hui observé avec une grande précision par toute une série d'instruments (ballons-sondes, sondes spatiales).
 
C'est l'observation de ce rayonnement fossile micro-onde, remarquablement uniforme dans toutes les directions, qui constitue aujourd'hui l'élément capital qui assoit le modèle du Big Bang comme description correcte de l'Univers dans son passé lointain. De nombreux éléments du modèle restent encore à déterminer (par exemple le modèle décrivant la phase d'inflation), mais il y a aujourd'hui consensus de la communauté scientifique autour du modèle du Big Bang.
 
Dans le cadre du modèle ΛCDM, les contraintes issues des observations de la sonde WMAP8 sur les paramètres cosmologiques indiquent une valeur la plus probable pour l'âge de l'Univers à environ 13,82 milliards d'années9 avec une incertitude de 0,02 milliard d'années, ce qui est en accord avec les données indépendantes issues de l'observation des amas globulaires10 ainsi que celle des naines blanches11. Cet âge a été confirmé en 2013 par les observations du satellite Planck.
À ce jour, aucune donnée scientifique ne permet de dire si l'Univers est fini ou infini. Certains théoriciens penchent pour un Univers infini, d'autres pour un Univers fini mais non borné. Un exemple d'Univers fini et non borné serait l'espace se refermant sur lui-même. Si on partait tout droit dans cet Univers, après un trajet, très long certes, il serait possible de repasser à proximité de son point de départ.
 
Les articles populaires et professionnels de recherche en cosmologie emploient souvent le terme « Univers » dans le sens d'« Univers observable »[réf. nécessaire]. L'être humain vit au centre de l'Univers observable, ce qui est en contradiction apparente avec le principe de Copernic qui dit que l'Univers est plus ou moins uniforme et ne possède aucun centre en particulier. Le paradoxe se résout simplement en tenant compte du fait que la lumière se déplace à la même vitesse dans toutes les directions et que sa vitesse n'est pas infinie  : regarder au loin revient à regarder un événement décalé dans le passé du temps qu'il a fallu à la lumière pour parcourir la distance séparant l'observateur du phénomène observé. Or il ne nous est pas possible de voir de phénomène issu d'avant le Big Bang. Ainsi, les limites de l'Univers observable correspondent au lieu le plus lointain de l'Univers pour lesquelles la lumière a mis moins de 13,7 milliards d'années à parvenir à l'observateur, ce qui le place immanquablement au centre de son Univers observable. On appelle « horizon cosmologique » la première lumière émise par le Big Bang il y a 13,7 milliards d'années.
 
On estime que le diamètre de cet Univers observable est de 100 milliards d'années lumière12. Celui-ci contient environ 7×1022 étoiles, répandues dans environ 100 milliards de galaxies, elles-mêmes organisées en amas et superamas de galaxies12. Mais le nombre de galaxies pourrait être encore plus grand, selon le champ profond observé avec le télescope spatial Hubble.

saving score / loading statistics ...